
Journal of Computational Physics 212 (2006) 527–539

www.elsevier.com/locate/jcp
Comparison of four parallel algorithms for
domain decomposed implicit Monte Carlo

Thomas A. Brunner a,*, Todd J. Urbatsch b,
Thomas M. Evans b, Nicholas A. Gentile c

a Sandia National Laboratories1, Target and Z-Pinch Theory, P.O. Box 5800, Albuquerque, NM 87185-1186, USA
b Los Alamos National Laboratory2, P.O. Box 1663, Los Alamos, NM 87545, USA

c Lawrence Livermore National Laboratory3, 7000 East Avenue, Livermore, CA 94550, USA

Received 2 February 2005; received in revised form 18 May 2005; accepted 12 July 2005
Available online 24 August 2005
Abstract

We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport
on spatially decomposed meshes. Two of the algorithms are from the production codes KULL from Lawrence
Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Improved versions of each
of the existing algorithms are also presented. All algorithms were analyzed in an implementation of the KULL
IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. The improved
Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well load balanced
problems.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Monte Carlo methods; Parallel computation; Radiative transfer
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.07.009

* Corresponding author. Tel.: +1 505 844 1253; fax: +1 505 845 7820.
E-mail address: TABRUNN@sandia.gov (T.A. Brunner).

1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy�s National Nuclear Security Administration under Contract DE-AC04-94AL85000.
2 Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California

for the United States Department of Energy under Contract W-7405-ENG-36.
3 This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore

National Laboratory under Contract No. W-7405-ENG-48.

mailto:TABRUNN@sandia.gov

528 T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539
1. Introduction

Monte Carlo simulations are embarrassingly parallel if you replicate the spatial domain on all processors
of a distributed memory computer. However, this is not an option for many three-dimensional, coupled-
physics problems because of computer memory constraints. In these cases, the spatial domain must be
partitioned among the processors. As particles move through the system, they may hit a processor boundary
and need to be moved to another processor.

Four different algorithms are outlined, and the performance of each is measured on two test problems.
These algorithms are implemented in the KULL IMC package [1] running inside of ALEGRA [2]. This
package implements the Implicit Monte Carlo (IMC) scheme for thermal radiation transport of Fleck
and Cummings [3].

The IMC algorithm solves the time-dependent transport equation for photons coupled with matter.
The problem is meshed, with each zone in the mesh having an individual temperature. Particles repre-
senting photons are created by thermal emission in the zones or by other external photon sources and
are tracked through the mesh. These particles deposit energy in each zone they pass through, in an
amount calculated from the absorption opacity of the material in the zone. This deposition decreases
the energy of the particle. Particles also execute scatters, if the material in the zones has a non-zero
scattering opacity. The location of the created particles, and the scatters, are simulated using random
numbers. Thus, the results of the algorithm have statistical noise. Particles are terminated when they
reach problem boundaries or their energy reaches a small fraction, typically chosen to be 1%, of their
initial energy. Particles which survive until the end of the time step are retained and continue in the
next time step. At the end of the time step, the change in material energy is calculated by subtracting
the energy radiated by thermal emission and adding energy from absorption, and the new material tem-
peratures are calculated. This process is repeated on subsequent time steps until the end time of the
simulation is reached. The photon population is held constant in each time step by varying the energy
assigned to each photon. Energies for new photons in each time step are chosen so that the sum of all
of the photon energies equals the source energy plus the energy in photons from previous time step.
The only difference between serial and parallel implementations of the method is that particles must
be transferred across domain boundaries as they traverse the mesh. How to do this efficiently is the
subject of this paper.

ALEGRA supports fully unstructured two- and three-dimensional meshes with arbitrary spatial decom-
position. Fig. 1 shows a sample mesh used by ALEGRA. Fig. 1 is a sample physical geometry with a
cylinder of hot material radiating in the center of a rectangular box. The spatial decomposition of the mesh
is shown in Fig. 1, where the mesh has been broken into three regions, and each region is assigned to a
different processor.

When a Monte Carlo simulation is run in a domain decomposed fashion, the result will not necessarily
be the same as when it is run on a single domain. This occurs for two reasons: first, the random numbers
used in the simulation will be different; second, the order in which events occur will change. For example,
the deposition of energy in a zone by one particle can occur before the deposition by a second particle when
the problem is run on one domain, but after when it is run on two domains. This makes the sum of energy
deposited different, since finite precision floating-point addition is not commutative, for example
(x + y) + z = x + (y + z) may not be true. We eliminate the first problem by giving each particle a unique
random number stream, so that it uses the same random number stream on every domain. To solve the
second, we tally energy deposited into an integer data type, for which addition is commutative. This integer
result is then scaled to a floating point number at the end of the time step. As a result of this procedure, we
obtain identical results for our simulations on any number of domains. Details of this procedure can be
found in [1,4].

Processor 3

Processor 2

Processor 1

a b

Fig. 1. A sample two-dimensional geometry specification used by ALEGRA. Here, a cylinder of hot radiating material is in the center
of a rectangular box. The domain is divided into three regions, each assigned to one processor. (a) Material layout. (b) Processor
allocation.

T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539 529
The algorithms presented here only address the scalability for domain decomposed meshes that have
reasonable particle load balancing. If one processor has significantly more particles than the others, all
of the algorithms presented here will scale poorly. Two test problems will be used to illustrate the scaling
of the algorithms in the perfectly load balanced and mildly unload balanced cases.

Algorithm 1 (KULL)

get sorted list of neighbor processor ID numbers
while any active particles on any processor (MPI_Allreduce)

for each local particle
move particle to a termination event
if particle hit processor boundary

buffer particle
for each neighbor processor in list
if my id is less than the other�s id

send buffer size to neighbor (MPI_Send)
send particles to neighbor (MPI_Send)
receive buffer size from neighbor (MPI_Recv)
allocate memory for incoming message
receive particles from neighbor (MPI_Recv)

else

receive buffer size from neighbor (MPI_Recv)
allocate memory for incoming message
receive particles from neighbor (MPI_Recv)
send buffer size to neighbor (MPI_Send)
send particles to neighbor (MPI_Send)

530 T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539
2. Algorithms

In domain decomposed Monte Carlo, two sets of data must be communicated between the proces-
sors. The nearest neighbors must exchange particles that cross processor boundaries through shared
faces. For example, Processor 7�s nearest neighbors in Fig. 2 are Processor 3, Processor 6, Processor
8, and Processor 11. A global communication operation must also be performed so that all the proces-
sors know when all the other processors are finished moving all the particles. The four algorithms for a
time step in the IMC package vary in how they perform each of these two tasks. Specific MPI calls in
the algorithms are shown.

2.1. Algorithm 1: KULL

Algorithm 1 shows the original communication method used by the KULL IMC package [1]. The num-
ber of particles that need to be exchanged is not known, so this information must be sent before allocating
memory for the receive buffer. As for all algorithms, the list of neighbor processors must only be gathered
once per simulation; the mesh or its decomposition does not change between time steps. It is critical to have
a sorted list of the neighbors� processor identification numbers, otherwise it is possible to get locked cycles
of processors, each waiting on another to exchange particles. For the three processor decomposition shown
in Fig. 1, each processor must exchange particles with the other two. The following scenario could occur
with unsorted lists of neighbors: Processor 1 expects to exchange particles with Processor 2 first, and
Processor 2 expects to exchange particles with Processor 3 first, and finally Processor 3 expects to commu-
nicate with Processor 1 first. In this case, each of the processors will be waiting indefinitely for the others to
begin communication. If each processor orders its communication by processor number, Processor 1 com-
municates with Processor 2 first, and processor 2 communicates with Processor 1 first, thus eliminating the
lock.

Even though each processor needs to talk with only its neighbors, this algorithm can have a serial com-
munication pattern in certain circumstances. For example, if you had a square problem domain cut into
sixteen sub-domains, as shown if Fig. 2, it takes twelve steps to communicate all the data. In general for
square problems like this, it takes 4ð ffiffiffi

p
p � 1Þ steps, where p is the number of processors. It should take only

four steps since each processor has at most four neighbors. This serialization is due to the fact that each
1 2 3 4

5 6 7 8

9 1110 12

13 14 15 16

1 2 3

2 54

64

5 6 7 8

7 8 9

8 9 10

10 11 12

5

11

3

Key: Processor/Domain Number
Communication Step

Fig. 2. Communication pattern for the KULL IMC algorithm for a square spatial domain distributed on sixteen processors. It takes
twelve communication steps to fully exchange all particles when it should only take four steps.

T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539 531
processor talks with each of its neighbors one after another, in a specific order. Even if another neighbor is
ready to communicate, a processor will wait for the next one in its list.

Algorithm 2 (Improved KULL)

get list of neighbor processors ID numbers
while any active particles on any processor (MPI_Allreduce)

for each local particle
move particle to a termination event
if particle hit processor boundary

buffer particle
for each neighbor processor in list
initiate nonblocking send of particles to neighbor (MPI_Isend)

while any unreceived particle buffer messages from neighbors
for each neighbor processor in list

if incoming message from neighbor (MPI_Iprobe)
get incoming message size (MPI_Get_count)
allocate memory for incoming buffer
receive particles from neighbor (MPI_Recv)

wait until all nonblocking sends of particles have completed (MPI_Waitall)
2.2. Algorithm 2: improved KULL

The blocking sends and receives in Algorithm 1 lead to non-scalable behavior, like the serialization in the
example above. Algorithm 2 is an improved version of Algorithm 1 that uses nonblocking communication
and combines the buffer size with each buffer, which eliminates a separate message. The nonblocking com-
munication improves the algorithm in two respects. First, the serialization of Algorithm 1 is eliminated.
Additionally, processors are free to communicate with the neighbors that are also ready to communicate,
which helps performance when particles are not load balanced. If, for example, in Fig. 2, Processor 2 had
twice the number of particles of either Processor 1 or Processor 5, then Processor 1 and Processor 5 could
exchange particles before Processor 2 finish, allowing for the overlap of work and computations. In Algo-
rithm 1, Processor 1 and Processor 5 must wait until Processor 2 has finished its computations as well as
communicating with Processor 1.

2.3. Algorithm 3: Milagro

An algorithm based on the Milagro code [5–7] is outlined in Algorithm 3. For particle transport on a
spatially decomposed domain, each processor continuously loops over mutually exclusive options until
every particle in the entire domain finishes.

After simulating each particle, the communicator is checked to see if any particles have arrived from
neighboring domains on other processors. This frequent checking was necessary in the original implemen-
tation in Milagro on the SGI Octane ‘‘Bluemountain’’ supercomputer (now decommissioned) at Los Ala-
mos National Laboratory. Skipping even a small number of checks would occasionally lock the processors
on that machine.

If incoming particles have arrived, they are put into the active particle list in a last-in, first-out manner.
During transport, particles that leave the processor�s domain are buffered and eventually sent to the appro-
priate processors.

0

1 2 3 4 5 6 7 8 9

Fig. 3. The fat tree communication pattern used in Algorithm 3 with 10 processors. Processor 0 is the master processor, and all others
are slaves. All processors perform particle calculations.

532 T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539
When a processor has no more local particles or incoming particles, it deliberately flushes its buffers,
sending only the number of bytes needed to transfer the partially full buffer. The number of particles that
are being sent is encoded into the beginning of the message buffer and extracted when the buffer is received.

At the beginning of a time step, a master processor, typically Processor 0, gets a total number of global
particles that must be simulated over the course of the time step. When there appears to be no more incom-
ing particles, each slave processor sends a message to the master processor indicating how many slave-local
particles have been completed since the last such message. Fig. 3 shows the communication pattern between
the master and slave processors. The master processor occasionally checks for these incoming messages,
and adds the incoming slave particle completed counts to its own. Once the master determines that all
global particles have been completed, it broadcasts the finished status message to all slave processors.
The master processor and all the slave processors perform particle calculations; the master processor
has the additional work load of tallying the global number of particles completed. This extra work does
impact the scalability, which will be discussed in Section 3.

2.4. Algorithm 4: improved Milagro

Identifying the deficiencies in the Milagro algorithm, we may propose an improved algorithm. The
improved version of the Milagro algorithm is shown in Algorithm 4.

Algorithm 3 (Milagro)

get list of neighbor processor ID numbers
for each neighbor
post nonblocking receive for maximum particle buffer size (MPI_Irecv)

if master processor
post nonblocking receives for particles completed from all slaves (MPI_Irecv)

else slave processor
post nonblocking receive for finished message from master (MPI_Irecv)

sum to master total global number of particles (MPI_Reduce)
while global finished flag is not set
if any local particles

move the last particle in the list to a termination event
if particle hit processor boundary

buffer particle
if buffer full

send particle buffer to neighbor (MPI_Send)
else

increment local particles completed counter
for each incoming particle buffer (MPI_Test)

T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539 533
unpack number of incoming particles from buffer
process particles, adding to end of list
repost nonblocking receive (MPI_Irecv)

if no active local particles
send any partially full particle buffers (MPI_Send)
if master processor

for each completed particle count message from slaves (MPI_Test)
add to local number of particles completed
repost nonblocking receive for particles completed (MPI_Irecv)

if all global particles are completed
set global finished flag
for each slave

send global finished message to slave (MPI_Send)
else slave processor

send number of local particles completed to master (MPI_Send)
reset local particles completed to zero
if global finished message from master (MPI_Test)

set global finished flag cancel all outstanding nonblocking receives

While the Milagro algorithm avoids any global synchronizations during the time step, its scalability is
limited in three key areas. The Milagro algorithm uses a fat communication tree for the ‘‘particles
completed’’ messages, where Processor 0 is the master of all other nodes. The master processor checks
for many ‘‘particles completed’’ messages, which causes a load imbalance and poor scaling. The im-
proved Algorithm 4 uses a binary tree communication pattern [8], which is optimal for short messages
[9], for the asynchronous ‘‘particles completed’’ communications and the finished message broadcast.
Each processor has exactly one parent, except for Processor 0, which is the root of the tree. Each pro-
cessor has up to two children as well. For example, in Fig. 4, Processor 4�s parent is Processor 1, and
Processor 4�s children are Processors 9 and 10. This communications pattern ensures that each processor
has an even and minimal workload for incoming message tests. Each processor checks for the number of
0

1 2

3 4 65

7 8 9 10 11 12 13 14

15 16 17 18 19

Fig. 4. Binary tree communication pattern used in Algorithm 4 with twenty processors. Each processor has one parent, except for
Processor 0, which is the root of the tree. Each processor also has at most two children. All processors perform particle calculations.

534 T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539
particles completed messages from its children, and then forwards that count it its parent. The root pro-
cessor, Processor 0, plays the same roll as the master processor in Algorithm 3, namely it knows the glo-
bal number of particles that need to be processed and keeps the tally of the global number of particles
that have been completed so far. Once the root has determined that all particles on the entire mesh have
been finished, the finished flag is broadcast up the tree in the reverse manner. Each processor waits for
the finished message from its parent, exits the particle processing loop, and then forwards the finished
message onto its children.

Algorithm 4 (Improved Milagro)

get list of neighbor processors
for each neighbor
post nonblocking receive for maximum particle buffer size (MPI_Irecv)

calculate parent and children processor ID numbers
for each child
post nonblocking receive for particles completed (MPI_Irecv)

post nonblocking receive for global finished message from parent (MPI_Irecv)
sum to root processor total number of particles (MPI_Reduce)
while global finished flag is not set
if any local particles

move the last particle in the list to a termination event
if particle hit processor boundary

buffer particle
if buffer is full

send particle buffer to neighbor (MPI_Send)
else

increment local particles completed counter
for every N particles or if no active local particles

for each incoming particle buffer (MPI_Testsome)
unpack number of incoming particles from buffer
process particles, adding to end of list
repost nonblocking receive (MPI_Irecv)

for each completed particle message from children (MPI_Testsome)
add to local number of particles completed
repost nonblocking receive for particles completed (MPI_Irecv)

if no active local particles
send any partially full particle buffers (MPI_Send)
send number of particles completed to parent (MPI_Send)
if root processor

if all particles completed
set global finished flag

else

reset local particles completed to zero
if global finished message from parent (MPI_Test)

set global finished flag
for each child
send global finished message to child (MPI_Send)

cancel all outstanding nonblocking receives

The improved algorithm also eliminates the frequent checking for incoming messages. The message
queue is only checked after N particles have been simulated, allowing for greater scalability than the
(machine) limited N = 1 case of the Milagro algorithm.

We also found a performance increase in the checks for incoming messages by making one call to
MPI_Testsome instead of looping over MPI requests and making multiple calls to MPI_Test.

T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539 535
3. Performance results

The four algorithms have been tested on two problems in a constant work scaling study. The first is a
perfectly load balanced problem and the second is a mildly load-imbalanced problem.

All timings include only the particle transport section of the code and do not include things such as
input, output, or startup costs. The simulations were run on a Linux cluster with dual 3.05 GHz
Pentium Xeon nodes and Myrinet interconnects between the nodes. For all except the one-processor
runs, both processors on a compute node were used. In all the results, there is a drop in efficiency from
one to two processors mainly due to the fact that the memory bandwidth is shared between the
processors.

Only the parallel communication section of the code was modified for each of the algorithms; the physics
routines remained the same. The code has been designed to get identical results on varying numbers of pro-
cessors [4,7], which has the consequence that the particles can be simulated in any order. Because of this
feature of the original KULL IMC package, all results from all algorithms on any number of processors
are identical.

Each simulation was run a number of times, and the average run time computed for each case using
�t ¼ 1

N

XN
i¼1

ti; ð1Þ
where ti is the time from a given run, and N is the total number of runs. The estimated error in the mean [10]
is computed using
r�t ¼

ffi
1

NðN � 1Þ
XN
i¼1

ðti ��tÞ2
vuut . ð2Þ
The parallel efficiency for an algorithm, for a given number of processors, is computed using
�p ¼
�tbest serial

p�tp
; ð3Þ
where p is the number of processors, �tp is the average time, and �tbest serial is the average time from the best
serial algorithm. In practice, all four algorithms had very similar serial run times for both problems.
Because the errors in the run times are all independent, we can estimate the error in the efficiency by adding
the errors of the run times from Eq. (3) in quadrature [10], namely
r�p ¼ �p

ffi
r�tbest serial

tbest serial

� �2

þ
r�tp
�tp

� �2
s

. ð4Þ
The error bars on the figures are computed using this prescription.

536 T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539
3.1. A hot box

This problem is a cube with one centimeter long sides and is discretized with sixty zones per side for a
total of 216,000 zones in the mesh. All boundaries are reflecting. The box is filled with a uniform, hot
material at T = 1.1604505 · 107 K (1 keV), with an absorption cross section of ra = 5000 m�1, with a scat-
tering cross section of rs = 1000 m�1, with a density of q = 1000 kg/m3, and a heat capacity of
Cv = 5 · 109 J/K kg. Twenty time steps were computed, each with a constant size of Dt = 3 · 10�9 s. With
these parameters, the effective scattering cross section of the Fleck and Cummings method is approximately
reff = 6000 m�1. This is designed to be perfectly load balanced during the entire simulation, and each of
zones in the mesh is one mean free path thick.

3.1.1. Buffer size and message check frequency

The message check period, N in Algorithm 4, and maximum buffer size were varied to find the best val-
ues for the remainder of the tests. Sixty four processors were used to simulate 69,120,000 particles. Table 1
shows the run time as a function of buffer size and the message check period N. Generally the bigger the
buffer and the longer time between checking for incoming messages the higher the parallel efficiency and the
lower the run time. With bigger buffers, fewer messages need to be sent. Longer check periods also means
less work done to support the parallel algorithm. However, if the buffer is too big, the processors can run
out of memory, and the problem will fail to run. Additionally, if messages are not checked frequently
enough, the run times can increase by orders of magnitudes since processors will be waiting on each other
to receive messages. In certain circumstances, typically where the message check period was equal to or
greater than the buffer size, we have noticed a locking of the processors. Buffer size and message check
period are likely to depend on both machine and problem. We chose a buffer size of 5000 particles and
a message check period of 100 particles for the remainder of the tests in the Algorithm 4.

3.1.2. Constant work scaling

Fig. 5 shows the constant work efficiency of the four algorithms with four million particles per time step.
The same physical mesh was decomposed into roughly cubic chunks, one for each processor; the same
problem was run on an increasing number of processors. Each case was run ten times. Algorithm 1 and
Algorithm 3 do not scale well, each for a different reason. Algorithm 1 has a serialized communication
pattern, as discussed in Section 2.1. In Algorithm 3 the master processor spends a lot of time checking
for messages from all other processors. This leads to a significant load imbalance as the number of proces-
sors is increased. Algorithm 2 scales very well, but suffers slightly, when compared to Algorithm 4, from the
multiple global communications within each time step. Algorithm 4 scales very well to 244 processors. In
fact, the biggest performance decrease happened between one and two processors and is more a result of
machine architecture than of the algorithm behavior.
Table 1
Run time in seconds as a function of buffer size and message check period with the Algorithm 4 on a sixty four processor hot box
problem

Buffer size (particles) Message check period (particles)

1 2 10 100 1000

10 536.7 495.2 463.0
100 498.7 450.2 424.4 409.1
1000 488.1 437.3 405.0 400.6 440.1
5000 484.6 432.7 405.4 395.4 399.1

1 2 4 8 16 32 64 128 256

Number of Processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

nc
y

Algorithm 1: KULL
Algorithm 2: Improved KULL
Algorithm 3: Milagro
Algorithm 4: Improved Milagro

Fig. 5. The average parallel efficiency �, defined in Eq. (3), for the constant work hot box problem. Ten runs were computed with each
case. The error bars are computed using Eq. (4).

1 2 4 8 16 32 64 128 256

Number of Processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

nc
y

Algorithm 1: KULL
Algorithm 2: Improved KULL
Algorithm 3: Milagro
Algorithm 4: Improved Milagro

Fig. 6. The average parallel efficiency �, defined in Eq. (3), for the constant work vacuum box problem. Three runs were computed with
each case. The error bars are computed using Eq. (4).

T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539 537
3.2. A vacuum box

This is the same mesh as the hot box problem, but there is no material in the mesh. It is initially cold,
with a uniform isotropic source of T = 3.5 · 105 K on one side. Initially the load balance is not good, but by
the end of the time step, the box is uniformly filled with particles. Only one time step of Dt = 3 · 10�9 s was
run.

538 T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539
Fig. 6 shows the efficiency results from a constant work study using one million particles. Three runs
for each case were used to compute the average run times and efficiencies. The efficiency actually
improves for this problem as the number of processors increases. As the number of processors is
increased, particles traverse the mesh on each processor more quickly, and must be transferred to other
processors more often. Particles get transferred to more processors sooner, so the work can be more
evenly shared. In the extreme case of two processors for Algorithm 1 and Algorithm 2, Processor 1 must
move all the particles from the source boundary to the sub domain boundary while Processor 2 waits to
receive some particles. Once Processor 1 is finished, it sends the particles to Processor 2, which then
moves the particles to completion while Processor 1 sits idle, resulting in a 50% parallel efficiency.
The other two algorithms, Algorithm 3 and Algorithm 4, do not suffer from this problem as severely
because they exchange particle buffers more frequently. Similar things have been noticed before in dis-
crete ordinates simulations, where decomposing a three-dimensional mesh into two-dimensional columns
can dramatically improve performance [11] because information can be exchanged more often allowing
otherwise idle processors to do work.
4. Conclusions

Two production algorithms for asynchronous parallel Implicit Monte Carlo radiation transport were
analyzed and then improved. The improved version of the Milagro algorithm, Algorithm 4, performed
the best by scaling almost linearly out to 244 processors on a Linux cluster for load balanced problems.
The improvements were to check for messages less frequently and to use a scalable, nonblocking version
of the standard reduce and broadcast functions. It is critical not to have one processor do more work than
the others, even if it seems like it is a trivial amount of work, such as checking for incoming messages. The
algorithms that used blocking communication do not perform well due to unnecessary contention for pro-
cessor time.

All of these algorithms begin to suffer when the computational work is not balanced well between pro-
cessors, as in the vacuum box problem. Load imbalance generally presents the largest obstacle to achieving
good scaling in real applications. While this obstacle has not been addressed by these algorithms, achieving
good parallel scaling characteristics for load balanced problems is critical for any algorithm that attempts
to address the load imbalanced problem.
References

[1] N.A. Gentile, N. Keen, J. Rathkopf, The KULL IMC package, Tech. Rep. UCRL-JC-132743, Lawrence Livermore National
Laboratory, Livermore, CA, 1998.

[2] T.A. Brunner, T.A. Mehlhorn, A user�s guide to radiation transport in ALEGRA-HEDP, version 4.6, Tech. Rep. SAND2004-
5799, Sandia National Laboratories, Albuquerque, NM, November, 2004.

[3] J.A. Fleck Jr., J.D. Cummings, An implicit monte carlo scheme for calculating time and frequency dependent nonlinear radiation
transport, Journal of Computational Physics 8 (1971) 313–342.

[4] N.A. Gentile, M.H. Kalos, T.A. Brunner, Obtaining identical results on varying numbers of processors in domain decomposed
particle Monte Carlo simulations, Tech. Rep. UCRL-PROC-210823, Lawrence Livermore National Laboratory, March 2005.

[5] T.J. Urbatsch, T.M. Evans, Milagro version 2, an implicit Monte Carlo code for thermal radiative transfer: capabilities,
development, and usage, Tech. Rep. LA-14195-MS, Los Alamos National Laboratory, January, 2005.

[6] T.J. Urbatsch, T.M. Evans, MILAGRO implicit Monte Carlo: new capabilities and results, Tech. Rep. LA-UR-00-6118, Los
Alamos National Laboratory, October 2000.

[7] T.J. Urbatsch, T.M. Evans, Reproducibility in parallel Monte Carlo codes, Los Alamos National Laboratory Memorandum, 12
April, 1999.

[8] Derrick Coetzee, Binary tree, Wikipedia article. URL http://en.wikipedia.org/wiki/Binary_tree.

http://en.wikipedia.org/wiki/Binary_tree

T.A. Brunner et al. / Journal of Computational Physics 212 (2006) 527–539 539
[9] Rolf Rabenseifner, Optimization of collective reduction operations, in: M. Bubak, G.D.v. Albada, P.M.A. Sloot, J.J. Dongarra
(Eds.), International Conference on Computational Science, Lecture Notes in Computer Science, vol. 3036, Springer-Verlag,
Krakow, Poland, 2004, pp. 1–9.

[10] J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books,
1982.

[11] R. Baker, K. Koch, An Sn algorithm for the massively parallel CM-200 computer, Nuclear Science and Engineering 128 (3) (1998)
312–320.

	Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo
	Introduction
	Algorithms
	Algorithm 1: KULL
	Algorithm 2: improved KULL
	Algorithm 3: Milagro
	Algorithm 4: improved Milagro

	Performance results
	A hot box
	Buffer size and message check frequency
	Constant work scaling

	A vacuum box

	Conclusions
	References

